Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
bioRxiv ; 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38586016

Lipid droplets are fat storage organelles composed of a protein envelope and lipid rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.

2.
bioRxiv ; 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38562693

The advent of large-scale sequencing in both development and disease has identified large numbers of candidate genes that may be linked to important phenotypes. Validating the function of these candidates in vivo is challenging, due to low efficiency and low throughput of most model systems. This is especially the case in skin cells such as melanocytes, where the background mutation rate is high. We have developed a rapid and scalable system for assessing the role of candidate genes in a melanocyte specific manner using zebrafish. We generated transgenic zebrafish in which Cas9 was knocked-in to the endogenous mitfa locus, a master transcription factor of the melanocyte lineage. By introducing single guide RNA expression cassettes into mitfaCas9 embryos, we were able to achieve highly efficient melanocyte-specific mutation of genes important for melanocyte patterning and survival. These animals can be used to screen for dominant or recessive pigment defects in both the F0 generation (3 days) and F1 generation (3 months). We also utilized the mitfaCas9 line to study the role of melanoma genetic dependencies such as SOX10, demonstrating that loss of SOX10 reduces melanoma initiation yet promotes tumor progression by a switch to a SOX9hi state. This SOX10 to SOX9 switch has previously been observed in human patients, indicating that our system can be used to rapidly uncover biological states with relevance to human disease. Our high efficiency genetic approach can be readily applied to other cell lineages, with relevance to both development and disease.

3.
Cell Rep ; 42(12): 113535, 2023 12 26.
Article En | MEDLINE | ID: mdl-38060450

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Protein Serine-Threonine Kinases , Humans , Animals , Mice , Cell Line , Mice, Inbred C57BL , Male , Female , Epinephrine/pharmacology , Enzyme Activation/drug effects , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Gene Deletion , Colforsin/pharmacology , Insulin/metabolism , Phosphorylation/drug effects , Hippo Signaling Pathway/drug effects , Hippo Signaling Pathway/genetics
4.
Nat Commun ; 14(1): 3192, 2023 06 02.
Article En | MEDLINE | ID: mdl-37268606

Melanoma exhibits numerous transcriptional cell states including neural crest-like cells as well as pigmented melanocytic cells. How these different cell states relate to distinct tumorigenic phenotypes remains unclear. Here, we use a zebrafish melanoma model to identify a transcriptional program linking the melanocytic cell state to a dependence on lipid droplets, the specialized organelle responsible for lipid storage. Single-cell RNA-sequencing of these tumors show a concordance between genes regulating pigmentation and those involved in lipid and oxidative metabolism. This state is conserved across human melanoma cell lines and patient tumors. This melanocytic state demonstrates increased fatty acid uptake, an increased number of lipid droplets, and dependence upon fatty acid oxidative metabolism. Genetic and pharmacologic suppression of lipid droplet production is sufficient to disrupt cell cycle progression and slow melanoma growth in vivo. Because the melanocytic cell state is linked to poor outcomes in patients, these data indicate a metabolic vulnerability in melanoma that depends on the lipid droplet organelle.


Lipid Droplets , Melanoma , Animals , Humans , Lipid Droplets/metabolism , Zebrafish/genetics , Melanoma/pathology , Melanocytes/metabolism , Fatty Acids/metabolism , Lipid Metabolism/genetics
5.
Nature ; 613(7945): 759-766, 2023 01.
Article En | MEDLINE | ID: mdl-36631611

Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.


Phosphoproteins , Protein Serine-Threonine Kinases , Proteome , Serine , Threonine , Humans , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , Substrate Specificity , Threonine/metabolism , Proteome/chemistry , Proteome/metabolism , Datasets as Topic , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Cell Line , Phosphoserine/metabolism , Phosphothreonine/metabolism
6.
Cancer Discov ; 13(1): 194-215, 2023 01 09.
Article En | MEDLINE | ID: mdl-36259947

In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE: We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.


Melanoma , Zebrafish , Animals , Humans , Zebrafish/genetics , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Neoplasm Recurrence, Local/genetics , Melanoma/pathology , Gene Expression Profiling , Neoplasm Metastasis , Gene Expression Regulation, Neoplastic
7.
Dis Model Mech ; 16(1)2023 Jan 01.
Article En | MEDLINE | ID: mdl-36472402

Obesity is a rising concern and associated with an increase in numerous cancers, often in a sex-specific manner. Preclinical models are needed to deconvolute the intersection between obesity, sex and melanoma. Here, we generated a zebrafish system that can be used as a platform for studying these factors. We studied how germline overexpression of Agrp along with a high-fat diet affects melanomas dependent on BRAFV600E and loss of p53. This revealed an increase in tumor incidence and area in male, but not female, obese fish, consistent with the clinical literature. We then determined whether this was further affected by additional somatic mutations in the clinically relevant genes rb1 or ptena/b. We found that the male obesogenic effect on melanoma was present with tumors generated with BRAF;p53;Rb1 but not BRAF;p53;Pten. These data indicate that both germline (Agrp) and somatic (BRAF, Rb1) mutations contribute to obesity-related effects in melanoma. Given the rapid genetic tools available in the zebrafish, this provides a high-throughput system to dissect the interactions of genetics, diet, sex and host factors in obesity-related cancers.


Melanoma , Zebrafish , Animals , Female , Male , Zebrafish/genetics , Zebrafish/metabolism , Agouti-Related Protein/genetics , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Melanoma/genetics , Melanoma/pathology , Mutation/genetics , Obesity/complications , Obesity/genetics , Diet
8.
Nature ; 604(7905): 354-361, 2022 04.
Article En | MEDLINE | ID: mdl-35355015

Oncogenic alterations to DNA are not transforming in all cellular contexts1,2. This may be due to pre-existing transcriptional programmes in the cell of origin. Here we define anatomic position as a major determinant of why cells respond to specific oncogenes. Cutaneous melanoma arises throughout the body, whereas the acral subtype arises on the palms of the hands, soles of the feet or under the nails3. We sequenced the DNA of cutaneous and acral melanomas from a large cohort of human patients and found a specific enrichment for BRAF mutations in cutaneous melanoma and enrichment for CRKL amplifications in acral melanoma. We modelled these changes in transgenic zebrafish models and found that CRKL-driven tumours formed predominantly in the fins of the fish. The fins are the evolutionary precursors to tetrapod limbs, indicating that melanocytes in these acral locations may be uniquely susceptible to CRKL. RNA profiling of these fin and limb melanocytes, when compared with body melanocytes, revealed a positional identity gene programme typified by posterior HOX13 genes. This positional gene programme synergized with CRKL to amplify insulin-like growth factor (IGF) signalling and drive tumours at acral sites. Abrogation of this CRKL-driven programme eliminated the anatomic specificity of acral melanoma. These data suggest that the anatomic position of the cell of origin endows it with a unique transcriptional state that makes it susceptible to only certain oncogenic insults.


Melanoma , Skin Neoplasms , Animals , Animals, Genetically Modified , Carcinogenesis/genetics , Foot , Hand , Humans , Melanoma/pathology , Nails , Oncogenes/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcription, Genetic , Zebrafish/genetics , Melanoma, Cutaneous Malignant
9.
Science ; 373(6559): eabc1048, 2021 Sep 03.
Article En | MEDLINE | ID: mdl-34516843

Oncogenes only transform cells under certain cellular contexts, a phenomenon called oncogenic competence. Using a combination of a human pluripotent stem cell­derived cancer model along with zebrafish transgenesis, we demonstrate that the transforming ability of BRAFV600E along with additional mutations depends on the intrinsic transcriptional program present in the cell of origin. In both systems, melanocytes are less responsive to mutations, whereas both neural crest and melanoblast populations are readily transformed. Profiling reveals that progenitors have higher expression of chromatin-modifying enzymes such as ATAD2, a melanoma competence factor that forms a complex with SOX10 and allows for expression of downstream oncogenic and neural crest programs. These data suggest that oncogenic competence is mediated by regulation of developmental chromatin factors, which then allow for proper response to those oncogenes.


Carcinogenesis/genetics , Carcinogenesis/pathology , Chromatin/metabolism , Melanoma/genetics , Melanoma/pathology , Neural Crest/pathology , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Animals , Animals, Genetically Modified , Chromatin/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Melanocytes/metabolism , Melanocytes/pathology , Mice , Neoplasms, Experimental , Neoplastic Stem Cells/pathology , Neural Crest/metabolism , Pluripotent Stem Cells/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Transcription, Genetic , Zebrafish
10.
Elife ; 102021 08 31.
Article En | MEDLINE | ID: mdl-34463618

Although virtually all gene networks are predicted to be controlled by miRNAs, the contribution of this important layer of gene regulation to tissue homeostasis in adult animals remains unclear. Gain and loss-of-function experiments have provided key insights into the specific function of individual miRNAs, but effective genetic tools to study the functional consequences of global inhibition of miRNA activity in vivo are lacking. Here we report the generation and characterization of a genetically engineered mouse strain in which miRNA-mediated gene repression can be reversibly inhibited without affecting miRNA biogenesis or abundance. We demonstrate the usefulness of this strategy by investigating the consequences of acute inhibition of miRNA function in adult animals. We find that different tissues and organs respond differently to global loss of miRNA function. While miRNA-mediated gene repression is essential for the homeostasis of the heart and the skeletal muscle, it is largely dispensable in the majority of other organs. Even in tissues where it is not required for homeostasis, such as the intestine and hematopoietic system, miRNA activity can become essential during regeneration following acute injury. These data support a model where many metazoan tissues primarily rely on miRNA function to respond to potentially pathogenic events.


Gene Regulatory Networks , MicroRNAs/genetics , RNA-Induced Silencing Complex/genetics , Animals , Female , Homeostasis , Mice , Mice, Transgenic , Peptides/metabolism , Pregnancy , Regeneration/genetics , Transgenes
11.
Mol Cell ; 70(3): 531-544.e9, 2018 05 03.
Article En | MEDLINE | ID: mdl-29727621

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


Autophagy/physiology , Fasting/metabolism , Lipid Metabolism/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Autophagosomes/metabolism , Caenorhabditis elegans/metabolism , Cell Line , Fibroblasts/metabolism , HEK293 Cells , Humans , Liver/metabolism , Mice , Phosphatidylinositol Phosphates/metabolism , Signal Transduction/physiology
12.
J Biol Chem ; 291(17): 9119-32, 2016 Apr 22.
Article En | MEDLINE | ID: mdl-26893378

Tissue transglutaminase (tTG) is an acyltransferase/GTP-binding protein that contributes to the development of various diseases. In human cancer cells, tTG activates signaling pathways that promote cell growth and survival, whereas in other disorders (i.e. neurodegeneration), overexpression of tTG enhances cell death. Therefore, it is important to understand how tTG is differentially regulated and functioning to promote diametrically distinct cellular outcomes. Previous structural studies revealed that tTG adopts either a nucleotide-bound closed conformation or a transamidation-competent open conformation. Here we provide evidence showing that these different conformational states determine whether tTG promotes, or is detrimental to, cell survival, with the open conformation of the protein being responsible for inducing cell death. First, we demonstrate that a nucleotide binding-defective form of tTG, which has previously been shown to induce cell death, assumes an open conformation in solution as assessed by an enhanced sensitivity to trypsin digestion and by small angle x-ray scattering (SAXS) analysis. We next identify two pairs of intramolecular hydrogen bonds that, based on existing x-ray structures, are predicted to form between the most C-terminal ß-barrel domain and the catalytic core domain of tTG. By disrupting these hydrogen bonds, we are able to generate forms of tTG that constitutively assume an open conformation and induce apoptosis. These findings provide important insights into how tTG participates in the pathogenesis of neurodegenerative diseases, particularly with regard to the actions of a C-terminal truncated form of tTG (TG-Short) that has been linked to such disorders and induces apoptosis by assuming an open-like conformation.


Apoptosis , GTP-Binding Proteins , Neurodegenerative Diseases , Transglutaminases , Animals , Cell Survival , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Humans , Mice , NIH 3T3 Cells , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/genetics , Protein Glutamine gamma Glutamyltransferase 2 , Protein Structure, Secondary , Protein Structure, Tertiary , Transglutaminases/chemistry , Transglutaminases/genetics , Transglutaminases/metabolism
...